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A general linear theory is developed to describe the manner in which rigid fluid 
rotation is established from a prescribed initial state of motion in a container of 
arbitrary shape. The container rotates with uniform angular velocity and is 
filled with a viscous incompressible fluid. 

A new mean circulation theorem is proved and used to separate the flow into 
geostrophic motion and inertial oscillations. The basic eigenvalue problem is 
studied and important properties concerning spectrum, orthogonality and com- 
pleteness are deduced. The effect of viscosity on the inviscid modes is calculated 
in a manner that maintains the solution uniformly valid through the spin-up 
time. All modes decay in this time scale which characterizes the entire transition 
to rigid rotation in all configurations. 

1. Introduction 
This paper considers the transient flow of a viscous fluid filling an arbitrarily 

shaped container that rotates with constant angular velocity. Of principal 
interest is the manner in which any initial state of motion is resolved into rigid 
rotation. A previous paper, Greenspan (1964) (henceforth denoted by I), dealt 
with motion inside a sphere because this special, but typical, case allows the 
complete explicit determination of eigenmodes, frequencies, viscous effects, etc., 
and is a convenient configuration for experimental purposes. Furthermore, the 
specific results provide the insight and motivation to formulate the appropriate 
generalizations and always serve as a concrete illustration of the complete 
theory. Moreover, the analytical methods used here are extensions of those 
already developed and employed and in the interests of brevity frequent 
reference to I is made for pertinent details of extended procedure. However, 
many of the general theorems and results presented here are new; others are 
deduced in different and simpler ways than were their counterparts in I. The 
mean circulation theorem of Q 4 exemplifies these remarks. 

The basic procedure is almost the same as that used previously and, briefly, is 
as follows: An expansion in inverse half powers of the Taylor number, R, is 
introduced in the governing equations and the eigenmodes of the inviscid 
problem, R = 00, and their properties are determined first. Each mode is then 
corrected for viscous effects (boundary layers) in a manner designed to achieve 
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a uniformly valid approximation through the spin-up time, T = L(Qv)-t 
(symbols are defined in 9 2). The synthesis of the initial flow into the viscosity- 
corrected uniformly valid modes completes the solution. An extensive dis- 
cussion of both method and solution for the special case of the spherical container 
appears in I; a description of the general case is given in 5 5 .  

2. Formulation 
Consider a closed container of arbitrary shape that rotates with uniform 

angular velocity, Q, about a fixed axis along which the z co-ordinate is measured. 
A viscous incompressible fluid fills t,he container and is, at some initial instant, in 
a prescribed state of motion that deviates slightly from rigid rotation. If  L, 
eQ2L and 0-1 characterize the length (container height), initial velocity, and time 
respectively, then these quantities may be used to make the equations of motion 
dimensionless 

% + e q . V q + 2 k x q + V p  at = R-'Aq, V . q  = 0, (2.1) 

where R = QL2v-l 9 1 is the Taylor number and p is the actual pressure less the 
centrifugal pressure +pQL2(r-kz)2. The Rossby number, e, is assumed to be 
small. (In fact, non-linear effects have been shown to be relatively unimportant 
in one case compared to the action of viscosity for rather significant variation of 
the parameter 8,  Greenspan & Weinbaum 1965.) Accordingly, only the linear 
problem is considered and the fundamental boundary-value problem becomes 

with q = 0 a t  the boundary and q(r, 0 )  = q,(r) is the initial velocity distribution. 
Of course, q, satisfies the mass conservation law and the boundary condition 
n.q, = 0 a t  the container wall (n is the unit outward normal to the bounding 
surface). 

A single equation for the pressure is obtainable from (2.2) 

but the boundary conditions cannot be written in terms of just one dependent 
scalar variable. 

It is known that, for R very large, direct viscous action is confined to a thin 
boundary layer at the container wall of thickness R-4. However, this Ekman 
layer produces a small O(R-6) circulation in the inviscid interior which exerts 
a major influence on the flow by means of vortex line stretching and the transport 
of angular momentum. In this fashion, viscosity eliminates the initial velocity 
distribution in the spin-up time scale, Rg. Thus, if all the important phenomena 
are to be included in the analysis, the solution (accurate to O(R-4)) of the funda- 
mental boundary-value problem, (2.2) et seg., must be uniformly valid in space 
and time at least through spin-up. 

The third time scale, t = O(R), characterizing the time required for viscous 
diffusion to permeate into the interior, is of little importanc,e in transient motions. 
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However, non-uniformities in the boundary layers themselves are important but 
fortunately they produce lower-order effects than concern us here. These effects 
do make obscure the correct form of the expansions appearing below, beyond 
terms of order R-4, and a complete formal expansion procedure is not attempted. 

Let n be the unit outwardly directed normal a t  the bounding wall and let 6 be 
the stretched boundary-layer co-ordinate so that in the viscous layer 

n . V = - R+(.'/a<) 

but n x V is an order-one tangential derivative. The container itself is described 
as consisting of top and bottom surfaces given by 

nL in 

+ a, + am + R-4 {a, + C aml} + . . ., 
p = $O(r,R-3t); s @,,( r ) e ~ ~ t + R - ~ { $ l ( r , R - ~ t ) + ~ $ , l ( r , t ) } +  ... 

W L  7n 

ni nL 

+ d o  + s dm + R-4 ($1 + x dml) + . .., 

I z = f ( G Y )  (top), 

z = - g(z, y) (bottom). 

' ( 2 . 5 )  
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with go. n = 0 on the boundary; 

A,: 2kxQo-na$,/8<= Pqo/8c2; -a(n.q,)/a<+n.Vx(nxij,) = 0; 

with ijo = -qo on the boundary c = 0; 

A,: aqo/a7 + 2k x q1 = - V$l (r = R-tt); V.  q, = 0, 

with n .  (ij, + q,) = 0 on the boundary and qo(r, 0) prescribed. 
Physically speaking, the basic interior flow (problem A,) requires a boundary 

layer (A3)  to reduce the tangential velocity to zero at the wall. In  turn, this 
boundary layer produces an O( R-4) normal flux which forces further interior 
motion of the same scale (A4). The tangential velocity of this secondary circula- 
tion must be corrected at the boundary and so on and so forth. 

The problem sequence for the typical inertial mode represented as 

q = Q, esmt + R-+q,, + . . . + q, + R-gqml + . . ., 
p = @, e.’mt + R-*&, + . . . + $m + R-t$m, + . . ., 
S, = ih,+~,,R-*+ ..., 

is the following: 

B,: 8(q,.n)/ag = 0, 6, = 0; 

B2: i h , Q , + 2 k ~ Q , + V @ ~  = 0, V . Q m  = 0, 

with Q,.n = 0 on the boundary; 

B,: a Q,/at + 2k x q ,  - n a$,/?< = s2qm/a<2 ,  

- a(n . q,,)/ag + n . V x (n x 4,) = 0 ,  

with q, = - Q, esml on 5 = 0 and (q&, = 0; 

B,: aqm1/8 + 2k x qml = - V&l - sml Q,, e h 6 ,  V. q,, = 0, 

with n.  (qml + Qml)  = 0 on the boundary; (qml)l=o = 0. 

It would, of course, be simplest to  assume the same exponential time behaviour 
for all functions appearing in problem sequence (B)  but this classical procedure 
encounters certain mathematical difficulties that can be surmounted, but in 
a none too satisfactory manner. These difficulties arise from interchange of limit 
processes and integrations involving R and 6 at particular critical positions on 
the container surface given by 2n. k = h (critical latitudes in the sphere problem). 
The present method avoids this trouble in a more satisfactory manner, produces 
a superior approximation for the actual time-dependent boundary layers, and 
leads to the same direct calculation for the decay factor sml as does the classical 
analysis. However, if only the parameter sml is desired, we may use the classical 
analysis and dismiss all the difficulties that arise (divergent integrals a t  one stage) 
by appealing to the more elaborate procedure, initiated here and developed in I, 
for some justification of method. 
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3. The geostrophic mode 
Problem A ,  for the functions q, and $o 

2 k x q 0  = -V$o, V.qo = 0, (3.1) 

with qo. n = 0 on boundary, 

is a special case of the general mode problem B, corresponding to h = 0. This 
implies that these functions have no O( 1) time dependence and accounts for the 
assumed form of solution involving the longer time scale r = R-it appropriate 
for spin-up (Greenspan & Howard 1963). 

The curl of (3.1) yields 

(k*V)qO = ( 9 0  = q0(x,Y?7))7 (3.2) 

showing that q, is a three-dimensional vector independent of height, z. The 
motion is columnar; the entire column of fluid from the lower surface z = - g(x, y) 
to the upper surface z = f ( x ,  y)  moves as a unit. Furthermore, if the horizontal 
velocity is introduced 

go = qF + wk 

then, upon multiplying (3.1) vectorially by k, it  follows that 

qF = i k  x V$o. (3.3) 

The axial velocity component is determined from the boundary condition 
qo . n = 0 at both ends of the column. Thus with 

nT = (k-Vf)(l+(Vf)2)-i; nB = (k+Vg)(l+(Vg)2)i ,  (3.4) 

we find that to = &.Vf = -qf.Og, 

w = l  H or 2 9 0  . (Vf- Vg). (3.5) 

Moreover, by subtracting the two equations and using (3.3), it  is established that 

k.V+,xV(f+g) = 0. 

However, $o is independent of x ,  and this result implies that the pressure is a 
function only of total height, with time acting as a parameter 

$0 = # o ( f +  997) = $ o ( k  7). 

go = - +[aOo(h, r)/2h] (1 + (vf)zP(l+ (Vg)2}j (nT x nB). 

(3.6) 

The velocity is then calculated to be 

(3 .7)  

Thus, in geostrophic flow a column of fluid of height h moves about the interior 
of the container as a unit, preserving its length. This mode can exist only if the 
container has closed contours of constant total height. The simple container 
consisting of a hemisphere rotating about a diameter on its flat surface is one for 
which no spin-up mode or geostrophic flow is possible. Constant-depth contours 
in this case do not form closed streamlines. 

The line contour C traced out on the bounding surface (either top or bottom) 
by a column of constant height, as it moves about, plays a crucial role in the 
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theory to follow. One of the properties of this curve to bear in mind is that its 
tangent vector is 

v = nT x nB, 

which is of course also the direction of the velocity vector qo in space. It is worth 
restating that q, is a three-component vector independent of the x co-ordinate; 
C is a space contour. For future use, the circulation about C is now recorded, 

n \ 

Problems A,  and A,  must be solved in order to study the viscous effects on this 
basic geostrophic flow. Consider the former first: 

2k x q0 - n (L?$,/a<) = ?2ijo/13cz, (3.9) 
-ii(n.&)/a<+n.Vx(nxqo) = 0, (3.10) 

with qo+qo= 0 on c = O .  

This is the usual formulation for the Ekman boundary layer. The first equation 
arises from the requirement that the tangential component of the interior 
velocity bereduced to zero at the wall. The second equation determines the normal 
flux, n .  ql, induced by this viscous layer which produces further interior motion 
(problem A,). 

Simple vector manipulations of (3.9) lead to the basic boundary-layer equation 

d z ( n ~ Q ~ + i ~ ~ ) / a < ~  = 2i(n.k)(nxQ0+iQO), (3.11) 

n x qo+iQo = - (n x qo+iqo) exp [ - (2in. k)*tJ, (3.12) 

where the positive root is implied. The normal flux into the boundary layer is 
found by integrating (3.10), 

(n. Q1)5=o = i n .  V x {[n x q, + (n . k) q,/ In. k(] In. kl-1). 

whose solution is 

(3.13) 

Problem A,  may now be stated in its entirety 

(3.14) 

(3.15) 

with n.q, = ( -n.Q,)5=o a t  the boundary. The curl of (3.14) reduces it to 

or 

In  order that (3.15) be satisfied 

so that 

(3.16) 

(3.17) 

A single equation relating q, and its time derivative is obtained by applying 
Stokes’s theorem to the top and bottom boundary surfaces ( z  = f, z = -9 )  
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enclosed by the spin-up contour C. If ST, SB denote the top and bottom surfaces, 
respectively, ds = vds = (nT x nB) ds is the directed arc length along C, and all 
vectors are independent of z, then from (3.17) (properly accounting for sign) 

However, (3.13) and (3.15) imply that 

(3.19) i dSTn,.q, = - g  d s . ( n ~ x q o + q o ) I n , . k l - ~ ,  s s6C 

sdflBnB*ql = 2 ‘p c d s * ( n B  q O - q O )  InB*kl-t* 

The replacement of these expressions in the preceding set, and the elimination of 
the integral involving B, yield 

-$cds*[(qO+nTxqO) lnT.kl-3+(qO-nBxqO) lnB*kl-31 

a 
= f C  ( f +  9) 7& go . ds .  (3.20) 

Since d s  x q,, = 0, andf+g = h, a constant on contour C ,  (3.20) simplifies to 

- f c d s . q o (  In,.kl-t+ InB.kl-g) = h $2 --O.ds. (3.21) 

Finally, using equation (3.7) for the geostrophic velocity q,, this becomes 

a24 
= h ~ ?  (h,r) $ (1 + 

irh or C 
(1 + (Vg)2)+ds, (3.22) 

from which a#o/ah can be determined by integration. Therefore 

(3.23) 

J = h ds(l+ (Vf)’)* (1 + (Vg)”*, k J 
and r = R-tt. The geostrophic velocity is obtained from (3.7). Equation (3.23) 
represents the complete generalization of the analysis of Greenspan & Howard 
(1963), who considered only axially symmetric containers. (Calling this flow a 
‘spin-up’ mode in the general case is a misnomer for it is no longer the only 
motion produced when the angular velocity of the container is suddenly changed, 
as it is for axially symmetric configurations. The ‘geostrophic’ flow is a more 
precise title.) 

The function #o (h, 0) is arbitrary and must be determined from the initial 
conditions but before this can be done the inertial modes must be studied. 
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4. Inertial modes 

rotating system 

with Q . n = 0 on the boundary. (The subscript notation is omitted for the time 
being.) The complex velocity vector is expressible in terms of the pressure as 

Consider now problem B, for the possible inviscid inertial oscillations of the 

ihQ+Bkx Q + V @  = 0,  O . Q  = 0, (4.1) 

( I  - $A2) Q = 4-k x VCD - 2ihVQ - (k/ih) (k.  VCD) (4.2) 

if h + 0, 2.  The first exception, h = 0, corresponds to the geostrophic mode 
discussed in the last section. The second exception will be considered after 
development of the general theory. 

PoincarB’s problem for the pressure alone 

V’CD - (4/h’) (k.  V)’@ = 0,  

- h2n.00 + 4(n. k) (k.V@) + 2i4k x n) .V@ = 0,  

(4.3) 

(4.4) with 

on the boundary, formed the basis of study in I. Although the explicit determina- 
tion of modes and frequencies for a particular configuration (e.g. the sphere) 
necessitates solving for CD, the theoretical properties of the problem are often 
more clearly discerned and proved by retaining the velocity vector intact and 
using the original formulation, (4.1) et seq. In  this case, for example, no exception 
for Ihl = 2 need be made. 

Several properties of this eigenvalue problem are now proved. All are generali- 
zations of results contained in I but the derivations for the most part are simpler. 
In  what follows, the complex conjugate of a function @ is denoted by ++. 

Property I .  The eigenvalues h are real and (A\  < 2 

Note first, in particular, that if (Q,  A)  is an eigenfunction-eigenvalue pair so is 
(Q+, -A) .  Multiply (4.1) by Q+ . and integrate over the volume of the container 

ihJQ. Q+dV + 2JQ+. k x Q d V = -lo+. VCD dV.  so that 

Since Q+ satisfies the divergence equation and Q+.  n = 0 on the boundary 

IQ+.VCDdV = ~ Q + . n Q d S - ~ C D V . Q + d V  = 0. 

la+. (k x Q )  dV JIm [k. Q x Q + ] d P  
9 (4.5) Therefore h = 2 i  ~- __ = - 2 .  

proving the first part of theorem. 

A simple bound for h is then 

j’Q.Q+dV / Q . Q + d V  

Let Q = A+Bi .  
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Property II. Orthogonality 

Let (Q,, An),  (Q,, A,) be any two eigenfunction-eigenvalue pairs satisfying 
(4.1) for which A, + At%. From the basic equations, the following expressions can 
be arranged 

(4.7) 

If these are added and integrated over the volume V ,  then with recognition of 
the fact that Q; . (k x Q,) = - Q,. (k x QA) it  follows that 

I i A , Q z .  Q, + 2QA. (k x 0,) = - Q; . VQ,, 
-iAmQ,.QL+2Q,.(kx QA) = -Q,.VQA. 

(A, - A,)SQA. Q, d I' = 0. 

/Qk. Q, d T' = 0. 

SdV [VQ, . VQ; + (4/A,A,) (k . V a n )  (k . VQL)] = 0,  

(4.8) 

Since A, + A,, the basic orthogonality property is 

(4.9) 

(If A, = - A,, then QA = Q,, a fact already noted.) In  terms of the pressure alone, 
the orthogonality relationship can be written as 

(4.10) 

a special case of which appeared in I. Equation (4.10) is simpler to use in any 
specific computation because the solution procedure involves the determination 
of the pressure Q. On the other hand, (4.9) is more desirable from the theoretical 
viewpoint. 

Property I I I .  Partial expansion theorem 

If a velocity distribution consists of only a superposition of inertial modes 

U = CA,,Qrn, (4.11) 

(where the pressure is obtained by integrating the basic momentum equation), 
then it is a direct result of property I1 that the Fourier coefficients are 

A ,  = SU.QAdV//QA.Q,dV. (4.13) 

In  general, an arbitrary velocity distribution must involve geostrophic motion 
as well as inertial oscillations. The geostrophic mode, which corresponds to the 
totality of eigenfunctions having zero eigenvalues, is also orthogonal to any 
inertial mode in the sense of property I1 but this is not sufficient. There must be 
some other distinguishing property that differentiates geostrophy from inertial 
oscillations if the complete synthesis of any initial distribution is to be accom- 
plished. In  other words, how is the arbitrary function $,(h) in equations (3.7) 
and (3.23) to be determined? The answer is contained in the mean circulation 
theorem. 

Mean circula,tion theorem 

(0) =Jf Qdz 

Define the average velocity vector 

-0  

(4.13) 
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which is a three-component vector independent of the z co-ordinate. Equations 
(4.1) can each be rewritten in terms of this depth-averaged velocity; for example 

where subscripts T or B indicate that the attached function is evaluated at the 
top or bottom surface of the container, and 

U J  = k .Q .  
The boundary condition is 

I Q . n  = 0 = QT.Vf -u jT ,  

= 0 = QB . vg + 
so that the preceding equation may be simplified to 

(4.15) 

V . ( Q )  = 0. (4.16) 

The averaging of t,he momentum equations takes the form 

f 
i h ( Q ) + 2 k ~ ( Q )  = - v /  ( b d Z + $ T n T + # B n u 7  

--Q 

(4.17) 

and in particular 
i h V x ( Q )  = V x q 3 , n T + V x ( b B n , .  (4.18) 

Application of the Stokes theorem to any section of boundary surface S bounded 
by a contour y implies that 

i A $  d S . ( Q )  = # T n T . d S f  $ s n B . d S .  
Y f Y f Y 

Let y be the geostrophic contour C of 5 3, the surface contour corresponding to 
constant total height f + g = h along which d s  = nT x nB ds.  Therefore 

for h += 0. The menn circulation about the geostrophic contour C is  zero for all 
inertial modes. Only the geostrophic mode possesses any mean circulatioii and 
this property allows us to complete the synthesis of an arbitrary initial state of 
motion. Note that since h is constant on C, the actual average, h-I(Q) may be 
used in (4.19). 

If the container is one for which no closed, constant-height contours exist, 
then there is, of course, no simple geostrophic mode. In  this case, the theorem 
is not true (the proof fails) and the inertial modes can possess circulation. How- 
ever, there is the possibility that an interior geostrophic motion can exist in such 
a configuration if non-linear inertial boundary layers arise to close the flow. The 
Gulf Stream in oceanic circulation exemplifies motion of this type. 
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Complete expansion theorem 

If U ( r )  now represents a possible arbitrary velocity distribution inside a con- 
tainer, then i t  may be represented as a superposition of all the possible modes 
inertial and geostrophic 

U ( r )  = qo + XAm 0,. (4.20) 

The mean circulation theorem is used first to determine q, as follows: Integrate 
over the depth to obtain 

U ( r ) d z  = hq,+XA,(Q) 

and compute the mean circulation about C ,  
c c 

From (3.8), it follows that 

a+,/ah = -2f J c  (U).ds, 

(4.21) 

(4.22) 

with J = h f d s { l +  ( V f ) 2 ) i ( 1  + (Vg)2)t (3.24) 
C 

and go = -4(a+o/ah)(1+(Vf)2~3"{1+(Vg)2}~n~~ng.  (3.7) 

Having determined the geostrophic mode explicitly, the remaining Fourier 
coefficients are obtained using the orthogonality relationship (4.9) 

Am = I (U-e) .Ql?;dV/SQl?; .Q,dV = JU.Ql?;dV/ /Q, .Q&dV 

and this completes the modal synthesis of an arbitrary distribution. The full 
solution of the initial-value problem is displayed in the next section. The 
remainder of this section is devoted to the calculation of the viscous decay factor 
sml or rather a discussion of the computation. The solution of problems B, 
and B, along the lines laid out in the introduction and illustrated in I has been 
obtained by M. D. Kudlick, of the M.I.T. Mathematics Department, and it 
appears as a part of his doctoral thesis. Essentially, solutions of problems B, and 
B, must be found which are uniformly valid in time through spin-up. As we 
have remarked already, the factor sml can be derived by the classical procedure, 
provided all mathematical difficulties met en route are dismissed or ignored. 
Consider then problem B, with 

qml = Q m l e s m t .  (4.24) 

If R is made infinite, the basic equations become 

(4.23) 

ih, Qm1+ 2k x Qm1= - V@m1- sml Qm, V * Q , 1 =  0,  (4.25) 

with n. Qml a known function on the boundary; say 

n. Qml = F,. (4.26) 

Of course, F, is found by solving problem B, and represents the flux into the 
boundary layer that must arise when the primary internal tangential velocity 
is reduced to zero at the wall. If (4.25) is multiplied by Q& . and the conjugate 
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of (4.7) multiplied by Qml (in the manner used to establish the orthogonality 
relationship), the two may be added and integrated over the volume to obtain 

JQA . V@, d V +  {Om,. V@L d V +sml{[ Q,I2dV = 0. (4.27) 

Further simplification leads to the result 

s ,  = --]@AF,as/{Q;.  Q,,dV. (4.28) 

Kudlick has determined, after further reduction, that 

- J q , & @ & d S = - -  1 ____ dX 
2J2 1 1-(n.k)2 (In. k x Q ,  - ik . 

+ In. k x Q ,  +ik. Om[ 
with 
In particular, this proves that 

pl,2 = A,, 5 2k. n. 

Res,, < 0, 

as i t  must be. A special case of this result, with several numerical computations 
for spherical modes, is contained in I; Kudlick has also investigated other con- 
figurations. 

The eigenfunctions corresponding to ( A [  = 2 fit into the theory presented here 
with no special attention required. However Q cannot be determined in entirety 
from the pressure function alone for such an attempt introduces the factor 
(1 - $A2), in this case a zero quantity. As a matter of fact, if h = 2 ,  say, then it 
follows directly that 

V@-(k.V@)k+ikXV@ = 0, (4.30) 

everywhere inside the container. This is a much more restrictive requirement 
than equations (4.3), (4.4), with which (4.30) is completely consistent. The fact 
that @ satisfies a lower-order equation when h = 2 probably means that in this 
case there is no acceptable solution other than zero. Certainly, for axially 
symmetric containers this is indeed true, but the proof will not be given here. 

The geostrophic mode may be viewed as the t,otality of all inertial modes 
corresponding to h = 0. Each mode would then represent a non-zero flow only 
in a cylindrical shell of infinitesimal cross-section about a geostrophic contour C,  
with generators parallel to k. The decay rate of such an infinitesimal mode 
obviously depends only on the local value of h. The sum (or integral) of these 
modes creates the general geostrophic flow whose decay rate is a function of 
position. 

The eigenvalue spectrum for the inviscid interior problem is known from I to 
be denumerable but dense in the interval (hl < 2. This has been shown t o  be 
only a manifestation of non-uniform limit processes; the spectrum really consists 
of isolated singularities. Actually, the entire concept upon which the inviscid 
analysis is based, that each mode is separable into an inviscid interior with 
a boundary-layer correction, breaks down when the effective modal wavelength 
is of the order of the boundary-layer thickness. If p is a typical wave-number, 
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the precise eigenvalue location involves the factor iR-lp2. Clearly then the error 
made in locating h by setting R = CQ is order one for values p = O(R*), The 
conclusion that the spectrum is dense results from the failure of the asymptotic 
method to locate the eigenvalues properly. The approximation yields only the 
projection of the correct eigenvalue position on to the real h axis; the projected 
positions are dense. 

5. The initial-value problem 
The interior solution of the initial-value problem, uniformly valid in time 

through the spin-up time to order (R-*), may now be displayedin full. The general 
time-dependent solution for the velocity vector is 

q(r7 t )  = q,(X, 9, R-ft)  + CA, 

qo = - & { 1 +  (Of 

exp @A, + smlR-*) tl, 
{ 1 + (Vg)2}* (a$,@, R-*t)/ah) nT x nB, 

(5.1)  

(3 .7)  where 

(3.23) 

the mean circulation theorem and orthogonality relationships are used to 
determine the unknown quantities. Therefore 

and 

The pressure is then 

A ,  = Jq*(r). Qt d V/JQt .  Q ,  d V .  

p ( r , t )  = $,(x, y ,  R-3t) +XB,cD,(r)exp[(iA,+s,lR-*)t]. 

(5 .4)  

(5 .5)  

It must be recognized that, in any specific application (as in I), the pressure is 
determined first and is the primary solution function. The velocity is then 
calculated to complete the solution, and the coefficients A ,  and B, are related 
through equations (4 .1)  or (4 .2 ) .  

In a container having closed contours of constant height h, the geostrophic 
mode is excited by any initial velocity distribution possessing mean circulation. 
That part of the initial flow with no mean circulation stimulates inertial oscilla- 
tions, all of which decay in the time R*Q-l, as does the geostrophic flow. If the 
configuration does not allow geostrophy to occur, the inertial modes can possess 
mean circulation and seem capable, in themselves, of representing any initial 
distribution. The possibility of a geostrophic interior joined to a non-linear 
inertial boundary layer, as in oceanic circulation, cannot be overlooked or 
ignored. 
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Viscosity, by means of the Ekman boundary layer, always acts to establish 
a state of rigid rotation in the time Rtfi-1. This rotational viscous layer necessi- 
tates a small normal mass flux and thereby generates an interior circulation that 
convects angular momentum and stretches vortex lines. Thus viscosity strongly 
affects the interior rkgime, not by viscous diffusion, but rather by the processes 
of momentum transport and vortex line stretching. This accounts for the com- 
paratively short charaeteristic time scale to destroy deviations from rigid rota- 
tion. This description has been given before for special configurations; the 
present work shows that i t  is generally true for contained rotating fluid motions. 
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